
TIONPAGEForm Approved
REPORT DO CUMENTiATO PAEO MB No. 0704-0 188

averq I hour bar response. incuding the tino for twvww~inalruions. sonic"' .etWq daa sbuned W galrnMd
lion (if Infomulln. Send cofrTWents regarding this burden ee*i0t 01r any other endd of thu ~tal Ifrnation.
41191' SONviM. Directorate tor Informnation OP~eation and ROPort. 1215 Jeffersoni Davis Highway, Suht 12%4. Artig al.

AD- A225 20 1 2. REPORT DATE 3. REPORT TY PE AND DATES COVERED

July 1990 SeilTechnical

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ni:An Atomic Multicast Transport Protocol NAG 2-593

6. AUTHOR(S)
Alan 0. Freier, Keith Marzullo

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Keith Marzullo, Assistant Professor REPORT NUMBER

Department of Computer Science, Cornell University 90-1141

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

DARPA! ISTO

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT I12b. DISTRIBUTION CODE

.!-,,.ED FOR PUBLIC RELEASE
...zI-RIBUIION UNLIMITED ,' ~I______________

1 3. ABSTRACT (Mfaximum 200 words)

This paper describes MTP: a reliable transport protocol that utilizes the multicast
strategy of applicable lower layer network ar .hitectures. In addition to transporting
data reliably and efficiently, MTP provides the client synchronization necessary for
agreement on the receipt of data and the joining of the group of communicants.

~~' gi19 9 0

14. SUBJECT TERMS VM15. NUMBER OF PAGES

#A 25
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UNCIASSIFIED UNCLASSIFIED UNCLASSIFIED JUNLIMITED

NSN 540-1290500Precried Or ANNI Sid. Z39-19

2910

~H) j

MT:AnAoicMltcs

Trnpr/Pooo

TECHNICAL REPORT

Department of Computer Science
Cornell University
Ithaca, New' York

na* MW

a -

MTP: An Atomic Multicast
Transport Protocol

Alan 0. Freier
Keith Marzullo*

TR 90-1141
July 1990

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*Keith Marzullo is supported in part by the Defense Advanced Research Projects

Agency (DoD) under NASA Ames grant number NAG 2-593, Contract N00140-87-C-
8904. The views, opinions, and findings contained in this report are those of the
authors and should not be construed as an official Department of Defense position,
policy, or decision.

~10L

! " -t Codes

S 3d/or

MTP: An Atomic Multicast Transport Protocol

Alan 0. Freier Keith Marzullo
Networking and Communications Cornell University

Apple Computer, Inc. Computer Science Dept.
Cupertino, CA 95014 Ithaca, NY 14853

freier~apple.com marzullo@cs.cornell.edu

July 30, 1990

Abstract

This paper describes MTP: a reliable transport protocol that uti-
lizes the multicast strategy of applicable lower layer network architec-
tures. In addition to transporting data reliably and efficiently, MTP
provides the client synchronization necessary for agreement on the re-
ceipt of data and the joining of the group of communicants.

Keywords: reliable transport, multicast, broadcast, atomic broad-
cast, agreement.

1 Introduction

A multicast transport is a virtual circuit connection among a set of commu-
nicating peer-level processes. As such, any multicast transport protocol has
to satisfy somewhat conflicting goals. Being a transport protocol, it should
supply quick and reliable delivery of large amounts of client data among the
communicants. Yet, being a multicast protocol, it should be able to supply
the ordering and agreement on the delivery of the data that is necessary
for writing decentralized applications. Agreement on order and delivery can

*Keith Mrzuflo is supported in part by the Defense Advanced Research Projects
Agency (DoD) under NASA Ames grant number NAG 2-593, Contract N00140-87-C-
8904. The views, opinions, and findings contained in this report are those of the authors
and should not be construed as an official Department of Defense position, policy, or
decision.

.IfTP: An Atomic Multicast Transport Protocol

take time, thereby slowing the delivery of the data. Hence, most multi-

cast protocols concentrate on a smaller set of goals: for example. [CPS88
and [CWS9] concentrate on fast delivery while [KTHB90] concentrates on
the fast ordered delivery of relatively small messages.

MTP, the transport described in this paper, attempts to satisfy both of
these goals. MTP is a full-duplex, flow-controlled, reliable multicast protocol
in which the data is sequenced into (perhaps long) messages. Messages are
sent within a process group called a web, where each message has a single
sender and is received by all members of the web. The members of the web
agree on the order of receipt of all messages and can agree on the delivery
of the message even in the face of partitions'.

MTP can be thought of as two protocols: a transport layer running un-

derneath an ordering and agreement layer. The transport layer is a negative
acknowledgement (or NAK) based protocol exploiting the high probability
of successful message delivery that the local area networks of today pro-
vide [CLZ87]. Additionally, this transport utilizes the underlying data link

and physical layer's capability to do multicast addressing. The ordering and
agreement nrotocol uses a sequencer site [CM87,KTHB90] called the master
that grants serialized tokens to producers.

The rest of this paper proceeds as follows. In Section 2, the class of
applications for which MTP is meant is contrasted with those applications
other atomic broadcast protocols support. The protocol is presented in
Section 3. Suggestions for values of the protocol's parameters are derived in

Section 4, and a discussion of MTP is given in Section 5.

2 Applications

MTP is designed to support applications that consist of a large number of
processes, where the processes send large messages and where the appli-
cation must be fault-tolerant (we consider crash failures of processes an,
communication link failures that can lead to partitioning). Examples of
such applications include multimedia teleconferencing systems, mu' .i.creen
educational systems, and stock brokerage systems. In making this assump-
tion, we intentionally exclude certain classes of applications that have been
considered elsewhere; in particular, those structured as client-server systems
with highly available services (e.g. [Sch86,MS88]).

'A partition is the separation of a network of processes into two or more disjoint sets
that cannot communicate with each other.

h -

.\ITP" An Atomic Mfulticast Transport Protocol 3

One issue that MTP must address is the efficient handling of network
partitioning. An argument can be made that transient partitioning is a
very common failure in the kind of applications we are considering [Cri90].
Timeouts are used to detect both crash failures and communication failures.
If a machine uses a timeout period that is too short, then it will appear to
the machine that the network has temporarily partitioned. For CSMA/CD
type data links, there is no upper bound on message delay (communication
and operating system software can also increase the variance of this delay).
so such transient partitions will be unavoidable. The application designer

must balance the cost of recovery from partitioning against the penalty of
using excessively long timeouts. Additionally, packets can be dropped due
to temporary congestion at both routers and workstations, again creating

transient partitions.
Our approach to tolerating partitions is to choose one process in the web

to be a distinguished process called the master. Since an MTP web contains
such a distinguished process, partitions can be treated in the same way as
crash or timing failures. If the master process Po cannot communicate with
a member process pl, then p0 assumes that P, has failed. If P, has instead
partitioned away from po, Pi will know that po considers pi to have failed
and behave accordingly. The vulnerability of a web to the failure of the
master is a matter of concern, however. If the application is to be long-
lived, care must be taken in choosing the machine that runs the master. In

Section 5.2, we discuss some techniques for making a master more robust.
Most other atomic broadcast algorithms are structured in a very decen-

tralized manner so the failure of any (usually size-bounded) subset of the

processes will not cause the application to fail. Being fault-tolerant in this
manner is very important for implementing highly-available services, but
it means that the complex issue of tolerating partitions in a decentralized

manner must be addressed [DGMS85]2 .
A more detailed description on the issues and uses of reliable broadcast

protocols can be found in [JB89].

2 A notable exauixple of an atomic broadcast protocol that does not have a decentralized
structure is described in (KTHB90, although as presented, this protocol cannot tolerate
partitioning.

.\ITP: An Atomic Multicast Transport Protocol 4

3 Protocol

Section 3.1 describes the overall structure of an MTP web. In Section 3.2, the
ordering and agreement protocol is described assuming an abstract trans-
port protocol. In Section 3.3, the transport protocol is described, and in
Section 3.4 the ordering and agreement protocol is extended to support the
establishment of a web and the joining of a member.

3.1 Web Structure

An MTP web consists of a master process and a set of member processes.
Member processes may join and leave the web, but the master process can-
not, as the web is both instantiated and terminated by the master. All
data is reliably multicast: that is, every process agrees on the order that
a given message will be processed, and the transport guarantees that any
given message is either accepted by all non-failed processes or not accepted
by any non-failed processes.

There are four transport service access points (TSAPs) associated with
a given web:

1. Multicast transport addresses: These are the addresses to which all
messages targeted for the entire web are transmitted. Each consists
of a multicast network service access point (NSAP) catenated with a
unique transport connection identifier.

2. Master's transport address: This is the TSAP for the master process.
This address is the destination of messages for the master process,
such as requesting a token or leaving the web. This address is also the
source of any message sent by the master process.

3. Join transport address: This is the NSAP for the service3 catenated
with the predefined join transport connection identifier. This address
is the destination of all requests to join the web.

4. Member transport addresses: These axe the addresses of all the pro-
cesses that are currently members of the web. Each consists of the
member process NSAP catenated with a unique transport connection
identifier. The source of any packet transmitted by a process, regard-
less of the packet's destination, is a member of this set.

'Determining this multicast NSAP for a given instantiation is not a function performed
by MTP.

.NITP: An Atomic Multicast Transport Protocol

3.2 Sequencing Messages

The agreement and ordering layer of MTP ensures that all processes agree on
which messages are accepted and in what order they are accepted. Let p, be
a member process and Al, be the sequence of messages that pi has delivered
to its client. The agreement layer ensures the following two properties:

AB-1 The sequence of messages that processes have delivered to the clients
do not diverge; that is, for all processes pi and p1 , M, is a prefix of M4,
or M4j is a prefix of Ali.

AB-2 There exists a connected subset of the nonfaulty (i.e. noncrashed)
processes that make progress.

Figures 1, 2 and 3 shows pseudocode for the MTP agreement and or-
dering protocol. In these figures, the primitive send p x sends the message
x to process p without blocking, the primitive receive p x is a CSP-like
guard [Hoa78] that receives a matching message from process p and stores
it into x, and multicast P x multicasts the message z to the processes in
the set P without blocking. The predicate failed(s) represents a timeout; it
will become true at some point after the processor that was issued the token
for message number s has crashed or remained partitioned away from the
master.

To send a message m to a web, a member process first requests one of a
set of t tokens from the master of the web. This token contains:

* the message number to be assigned to m,

e the multicast transport addresses as discussed in Section 3.1,

* the status of the last t messages. Such messages can be accepted,
rejected, or pending. Furthermore, the earliest of these t messages
must either be accepted or be rejected.

The master sets the status of the last t messages using the following rule.
Let m is one of these last t messages:

* if the master has seen the message m, then the status is accepted 4;

4The master has seen message m when it has received a data packet of message m
containing an end of message indicator; see Section 3.3.

.IfTP: An Atomic Multicast Transport Protocol 6

process Master
begin

members: integer set := i ... 1;
status (1.. t): Status := undefined ... , undefined;
t: constant integer; the number of tokens
next: integer := 1;

$: integer;
m: Data;
last (1.. t): Status;

do receive Sender(i: 1..n) ["token request"] and status(t - 1) pending -
begin
status(l.. t) := pending, status(1.. t - 1);
next := next + 1;
send Sender(i) ["token-grant", next, status, members]
end

U receive Receiver(i: 1..n) ("data", s, m, last] -
if next - s < t and status(next - s) = pending

then status(next - s) := accepted;

O failure(s) and next - s < t
and status(next - s) = pending -. status(next - s) = rejecled

od
end

Figure 1: Agreement Protocol for Web Master

* if the master has not seen the message m but the sender of m is
still operational and connected to the master (as determined by the
master), then the status is pending;

* otherwise, the status is rejected.

An abbreviated proof of this protocol is presented in the Appendix. In-
formally, the specification is met because the behavior of the web is defined

by the behavior of the master. In particular, a member process accepts a

message m only if the master accepts m, and all messages are accepted in
the order of their message sequence numbers; thus, AB-1 is met. We de-
fine the connected subset of correct processes referred to in AB-2 as those
processes S that remain connected to the master. The master will accept

messages sent by processes in S and possibly reject other messages, and the

.\ITP: An Atomic Multicast Transport Protocol

process Sender(i: 1.. n)
begin

last (1.. t): Status;
members: integer set;
s: integer;
m: Data;

do receive producer(i) [m] -

begin
send Master ["token-request"];
receive Master ["token-.grant", s, last, members];
multicast {Master} I_ Receiver(members) ["data", s, last, m]
end

od
end

Figure 2: Agreement Protocol for Web Producer

members of S will in turn accept and reject these same messages as other
messages are sent'.

Having obtained a token, s multicasts message m with the token for mes-
sage m included in the header of the data packets that carry r. Processes
learn the status of earlier messages by seeing such packets, and can accept
and reject messages accordingly. This protocol can tolerate up to a sequence
of t failures; if there are t + 1 failures, then the master could send tokens
to these processes which could then fail before any nonfaulty process sees
any data sent with these t + 1 tokens. The headers of these tokens carry
information about the status of earlier messages, and since no other process
received any data sent with the earliest token, the status of some message
will never be propagated to the members of the web.

3.3 Sending Messages

The transport multicast layer of MTP is implemented using the multicast
capability provided by the network layer (which in turn is provided by the
data link and physical layers). For the purposes of this paper, we assume

'As written, a message can be acknowledged (and hence delivered) only when another

message is sent. However, the master can send empty packets, defined in Section 3.3, in
order to expedite the delivery of a message when subsequent messages are slow in being
generated.

.I

M TP: An Atomic Multicast Transport Protocol

process Receiver(i: .. n)
begin

data (..): Data := empty
status (1..): Status := pending
nextin, nextOut: integer := 1, 1;
last (1.. t): Status;
s: integer;
m: Data;

do receive Receiver(j: 1..n) ["data", s, last, m] -
begin
k: integer:= 2;
data(s - 1) := M;
do k < t - status(s - k) := last(k); k k + 1 od;
nextin := max s, nextin
end

receive consumer(i) and status(nextOut) = accepted -
if data(nextOut) 0 empty

send consumer(i) [data(nextOut)]; nextOut := nextOut + 1
Q data(nextOut) = empty - rejoin
fi

status(nextOut) = rejected - nextOut nextOut + 1
status(nextOut) = pending and (nextln - nextOut) > t - rejoin

od
end

Figure 3: Agreement Protocol for Web Consumer

that a multicast to all of the processes in a web can be accomplished by
performing multicasts to a small number of transport service access points

(TSAPs)-no more than can be included in the data portion of an MTP
packet. Network facilities similar to those described in (DC90] support this
facility, but are not necessary for MTP to operate.

The transport layer treats a message as an uninterpreted sequence of
bytes terminated by an end of message marker. The transport layer frag-

ments a message into a sequence of packets. Each packet carries a sequence
number of the form (m, p) where m is the message number and p is the packet
number in this message, starting at zero. For example, if message 5 were
broken into 3 packets, then the packets would be sequenced as (5, 0), (5, 1)

NITP: An Atomic Multicast Transport Protocol

and t5, 2) (of which the last would carry an end of message marker). and
the next packet would be sequenced as (6, 0).

There are three parameters that control the flow of data in the transport

layer. They are:

" heartbeat: A base unit of time, in milliseconds.

" window: The maximum number of dat? packets a producer can send

during any heartbeat.

* retention: The maximum number of heartbeats a producer must

buffer packets for possible retransmissions.

Data is transmitted in a burst of packets such that no more than the
current window of data packets will be sent during a single heartbeat. Every
packet transmitted (including control packets) always contains the latest
heartbeat, window and retention infoimation along with the statuses of the
previous t messages and the next message sequence number. If full packets
are not available6 , empty packets will be transmitted instead (defined below).
The only data packets that will be transmitted containing less than the
maximum capacity will be those that mark a client state transition.

A empty packet is a control packet that is multicast into the web at reg-
ular intervals whenever the producer owning a token cannot transmit client
data. Empty packets are sent to maintain synchronization and to advertise
the maximum sequence number of the producer. Empty packets provide the
opportunity for consuming processes to detect and request retransmission
of missed data as well as identifying the owner of a transmit token.

If a producer receives a NAK from a consumer requesting the retransmis-
sion of one or more packets, those packets will be multicast to the entire web
or to a selected subset of the multicast TSAPs. All retransmitted packets
will contain the original client information and sequence number. However,
the retransmitted packets will contain updated parameter information (the
heartbeat, window and retention). As no more than than a full window of
data messages can be sent during one heartbeat, retransmitted packets have

priority over new packets during the next heartbeat.
The producer is obligated to retransmit a packet upon request for at least

retention heartbeats after its original transmission (even after the message

has been completely sent). If the producer receives a NAK from a consumer

6The resource being flow controlled is a packet carrying client data. Consequently, full
packets provide the greatest efficiency.

.\ITP: An Atomic Multicast Transport Protocol 10

process requesting the retransmission of a packet that is no longer available.
the producer sends a nak deny to the source of the request. If the consumer
cannot recover from the loss of this packet, then the consumer rejoins the
web to resynchronize.

Figure 4 shows a space-time diagram of a process transmitting into a
web assuming no NAKs, and Figure 5 illustrates data transmission and

NAK processing.

3.4 Consistency and Joining the Web

A process pi may become unrecoverably inconsistent with the master of the
web for several reasons. The most likely reason is that pi has partitioned

away long enough from the master so that pi missed learning the status of a

message. A less likely scenario is that some process pj transmits a message
that is received by the master but not by pi, and pj crashes before pi can ask

for retransmission of the missed packets. In any case, when a process finds
itself inconsistent with the master, it can resynchronize itself by rejoining
the web.

As described in Section 3.1, the master of a web constructs the master
transport address by catenating the NSAP with a locally generated unique
transport connection identifier. A process that wishes to join or rejoin the
web will send a join request message to the join transport address, and the

master will answer with a join response carrying a source of the master
transport address. Note that a rejoining process can determine whether the

web is the same session with which it became inconsistent by comparing
the previous and new transport connection identifiers it obtained in the join

confirm messages.
In general, a process that repeatedly receives no join confirm cannot

elect itself the master. Another process may follow the same reasoning in

another partition, and then if the partition were to end, there would be two
inconsistent webs with undesirable properties; for example, a third joining

process would nondeterministically join one of the two existing webs. Any
"merging" of such inconsistent webs would have to be done outside of MTP,

as the semantics of such a merge would depend on the application. A better
method for master selection would be for a process to know a priori if it
were the master or not. Doing so would both guarantee that there exists

only one active web with a given NSAP and would allow the master to be

located on a machine that is known to be reliably available.
Having joined a web, a process p must be informed which message it

.MITP: An Atomic .\fulticast Transport Protocol 11

should first accept. If p does not need to be given any state in order to
process the next message, then the master can immediately reply to the join
request message with a join confirm message containing the sequence number
s of the next token the master will hand out. Then, the joining process p

need only start receiving messages with sequence numbers greater than or
equal to s. However, for some applications p would need to be initialized
with the state of the web after all message before s have been accepted or
rejected. In this case, having received a join request, the master will stop
granting token requests and will delay sending a join confirm message to p
until all message before s have been accepted or rejected. Then, the master
can respond with the join confirm, p's state can be initialized (either by
having the master send the state or through a protocol outside of MTP).
and the master can resume granting tokens.

Figure 6 shows a space-time diagram illustrating the sequence of mes-
sages during a join with a transfer of state from the master.

4 Parameter Values

The values of heartbeat, window and retention can be adjusted by the trans-
port to reflect the capability of the members, the type of application being
supported and the network topology. In general, the producers will try to
drive these numbers towards a higher performance level, and the consumers
will try to drive these numbers towards a higher reliability level. By doing
so, both are trying to optimize the quality of service.

Producers can try to improve the performance by reducing the heartbeat
interval and by increasing the window size. This will have the effect of
increasing the resources committed to the transport at any time. To level
the resource commitment, the producer may also reduce the retention. In
the worst case, a producer must commit enough storage to hold window size
x retention maximum-size packets for heartbeat x retention milliseconds.

Consumers must rely on their clients to consume the data occupying the
resources of the transport. The consumer transport implementation must
monitor the level of committed resources in order to ensure that resources
are not overcommitted. Since MTP is a NAK-based protocol, the consumer
is required to inform a producer if a change in parameters is required. A
consumer must be capable of committing at least t times the memory com-
mitted by a producer.

For more reliable operation, a consumer would try to extend the heart-

MTP: An Atomic Multicast Transport Protocol 12

beat interval and increase retention. This has the effect of increasing the
resources needed to support the transport. To counteract this, the consumer
could reduce the window.

In order to make these parameters more concrete, consider MTP running
on a collection of 1-MIP workstations with local industry-standard disks,
communicating over a IEEE 802.3 local area network. The heartbeat is
approximately the transport time constant. Assuming that the transport
can be modeled as a closed loop function, reaction to feedback into the
transport should settle out in three time constants. In a transport that is
constrained to a single network, the dominant cause of processing delay will
most likely be the page fault resolution time. The time to service a page
fault is overwhelmingly the disk access time, and for the current industry-
standard disks, around 40 milliseconds is the average worst-case access time.
In the worst case, this time could double in order to reclaim a dirty page.
Allowing for additional overhead and scheduling delays, two times the worst
case page fault resolution time should be a suitable minimum transport time
constant, which is 160 milliseconds.

The window is the number of packets that can be consumed during
one heartbeat. For IEEE 802.3 local area networks, the transmit time per
packet is 1.2 milliseconds for a full packet of 1500 bytes. The processing
time on a 1-MIP machine running Unix should be around 5 milliseconds for
a full packet (where 2.5 - 3 ms of this is incurred by the operating system).
Assuming that the data for the packet originated from a disk backing store
and that disk service overhead is comparable to network service overhead,
the resulting overhead is 11.2 milliseconds per packet, corresponding to a
bandwidth of 1 Mbit/sec. During a heartbeat of 160 milliseconds 14 packets
can be sent, so the maximum window would be approximately 14 packets
per heartbeat.

At worst, each producer could consume 10 percent of the available net-
work bandwidth, so MTP will not be limited by the network bandwidth.
Each producer consumes about 80 percent of the consumer's processing
time, so having more than one producer outstanding could saturate a con-
sumer. However, to a point, having multiple tokens allows some producers
to acquire a token shortly before it is required (presumably overlapping the
transmission of an earlier message) without locking out another producer.
Additionally, increasing t decreases the average message delivery time (until
thrashing becomes a problem). Since the peak resource requirement scales
linearly with t, a reasonable value of t would probably be two or three.

Reducing retention may introduce instability because a consumer will

MTP: An Atomic Multicast Transport Protocol 13

have iess opportunity to react to missing data. Data can be missed for
a variety of reasons. If constrained to the local net, the data lost due to
corruption should be around one packet in 50,000". Four orders of magnitude
more packets are lost at receiving stations, including packet switch routers.
than over physical links. The losses are usually the result of congestion and
resource starvation at lower layers due to the processing of (nearly) back to
back packets. One can only require that a receiving station be capable of
receiving some number of back to back packets successfully, and that number
must be at least greater than the window size. The probability of success
can be made as high as needed by providing the receiver the opportunity to
observe the data multiple times.

At worst, the receiving station detects packet loss using timers. Such
timers might have a granularity of more than two orders of magnitude
greater than the maximum packet transmit time. As such, the worst case
is much worse than detecting data loss due to gaps in sequence numbers.
When the loss is detected, the response (a NAK) is transmitted and should
be received at the producing process in less than two heartbeats after the
data it references was transmitted. Again, it is the detection time that dom-
inates, not the transmission of the NAK. NAKs are also subject to loss, but
the probability of delivery can be made close to one by retransmitting. In
order to be able to respond to a second NAK, the minimum retention is
three.

The resources committed to a transport using the above assumptions are
buffers sufficient for 126 packets of 1500 bytes each, and each buffer will be
committed for at least 480 milliseconds.

The parameters would be very different for a web that spans an internet-
work of several LANs, and could be adjusted to accommodate the properties
of the network. For example, if a producer is separated from a set of con-
sumers by a router and the router drops a packet due to congestion then all
of the consumers will simultaneously send NAKs, further aggravating the
congestion. To avoid this burst of NAKs, the master could have previously
set the web's retention to f + 3 for some positive value of f. Each NAKing
consumer would taen dally for some number of heartbeats between 0 and
f before NAKing a missed packet. Not only would this dallying reduce the
number of simultaneous NAKs by a factor of f, but most processes would
probably receive the retransmission without sending a NAK.

'Telephone links (between routers, for example) are capable of exhibiting similar cor-
ruption rates.

.MITP: An Atomic Multicast Transport Protocol 14

5 Discussion

5.1 Number of Tokens

In Section 4, it was argued that a reasonable number of tokens would be
around two or three. It isn't clear what the number of tokens should be
when a web spans a larger collection of networks. On one hand, having more
tokens allows more processors to pre-allocate tokens, thereby overlapping the
longer round-trip message time with (hopefully) other processing. On the
other hand, the maximum number of buffers increases with the number of
tokens, and processors distant from the master are more likely to partition
away from the master, thereby increasing the number of failures.

One can allow the master to find a balance by varying the number of
tokens. This is done by logically splitting t into the two values tmax, which is
the maximum number of tokens that can be outstanding and is the number of
message statuses carried in a header, and tr, which is the current maximum
number of tokens that can be outstanding and need be known only by the
master. The number of failures that can be tolerated is determined by
tm,, (see the discussion in the Appendix). The master could then vary tour

between 1 and tm,,ax depending on the web performance.

5.2 Resiliency Against Failure of the Master

The main vulnerability of MTP is that the failure of the master can cause
the web to fail. For some applications (e.g., a stock brokerage system),
such a failure could be intolerable. In this case, it would become desirable
to replicate the web master. Replicating the master for high tolerance to
processor failure can be done without changing MTP, but having a replicated
master would be noticed by the members as an increase in the response time
to a token request (and less importantly, to a join request).

All the master replicas po ,p&,...po would reside on an unpartitionable
network (for example, a single local area network), guaranteeing that if a
member p, is connected with pol and member p2 is connected with p02, then
p, is connected with p02 and p2 is connected with po. The web's master
TSAP would be a multicast address for these replicated masters.

The masters would choose one amongst themselves to be the coordinator,
with the rest being cohorts [BJ87]. Any replica receiving a request would
atomically broadcasts the request to all the master replicas before the co-
ordinator would respond. Similarly, when the coordinator decides that a

.ITP: An Atomic .\fulticast Transport Protocol 15

message becomes accepted. the coordinator would first atomically broad-
casts this fact to all the master replicas8 . If the coordinator were then to
fail, one cohort would become the new coordinator. This new coordinator
would reject all messages that it considered pending and start responding to
master requests.

5.3 Web Membership

One issue we have not discussed in this paper is how a process can determine
the current membership of a web. Knowing this information can be very
useful; for example, if all the processes agree on the current web membership.
then each can agree a priori on how work should be partitioned amongst
themselves. The group membership problem is essentially that of having the
web members agree on when a process joins the web and when a process

leaves the web (either by failing, by partitioning away, or under its own
volition) [Cri88,Ric90]. The difficulty with the group membership problem
is that it really cannot be "solved"; since a process can fail without notifying
any other process, a member of a web cannot be sure whether or not another
process is currently a member. The best that can be done is to have the
web members agree on the membership of the web, and accept the fact that
there may be members that have crashed, and that there may be processes
that, due to the asynchronism in the system, have been excluded from the
web even though they have not crashed or partitioned away9 .

Group membership protocols operate by having processes monitor each

other. If a process p' decides that another process p has failed, then p' uses
some reliable broadcast protocol to disseminate this information to the other
web members [Ric9O]. A common method of detecting whether a process

p has failed or not is to use low-level "alive" messages: other processes
periodically expect such messages from p (perhaps as the result of periodic

'As stated in this paper, the only time a member learns the status of a message is
when it receives a token or a data message from another member. So, if the coordinator
were to notify the cohorts before granting a token, then the cohorts would be consistent.
However, in the actual protocol the master may send periodic empty packets to expedite
the delivery of messages. If this empty packet advertises a new status, then the coordinator
must inform the cohorts

"Web member must be careful in the deductions they make from the purported group
membership. For example, even if a process p was a member of a web through the de-
livery of some message rn, other web members cannot assume that p actually processed
any message ordered before m unless p specifically acknowledged this fact. To do oth-
erwise would be assuming a solution exists to the coordinated attack problem, which is
unsolvable [Gra791.

.\ITP: An Atomic Multicast Transport Protocol 16

requests), and assume that p has failed if such messages cease to arrive.
Once all web members agree that p has failed (even if it has not), the new
web membership is defined.

Since MTP is a NAK-based protocol, there is no defined low-level "'alive"
protocol. A web membership protocol, however can be implemented on top
of MTP as part of the application protocol. Each web member maintains

a set that contains the current web membership. When a process p joins a
web, p multicasts this fact to the web, and all web members (including p)

add p to their membership set when they receive this message. Similarly, if
a process p' decides, for any reason, that another process p has failed, then

p/ multicasts this fact to the web. If p' is still a member of the web when
this message is delivered, then each process (including p') removes p from

its membership set when it receive this message.
Such membership information is of interest to the master. As discussed

in Section 3.1, the master includes a list of multicast TSAPs in a token
grant message. This list of TSAPs covers the membership of the web as
known by the master, which as currently presented may not be the same
as the membership set described above. The solution in MTP is to allow
a producer and receiver to execute with the master. These processes can
exchange membership changes each observes-the master seeing token losses
and the receiver seeing member-observed failures. By doing so, the master
can remove a multicast TSAP from its list when all processes reached via
that TSAP have left the web, and the producer can multicast the removal

of a member process when that member loses a token.

5.4 Conclusions

MTP is a multicast transport that supports the strong conditions of agree-

ment on delivery, agreement on order and agreement on web membership.
An implementation of MTP is currently under way.

Acknowledgements Susie Armstrong is one of the architects of MTP.
and her careful readings of this paper have greatly increased its clarity.
Fred Schneider aided in formulating the proofs in the appendix, and Aleta
Ricciardi helped clarify the issued discussed in the group membership sec-

tion. Additionally, the authors would like to thank Ken Birman, Navin
Budhiraja, Tushar Chandra and Patrick Stephenson for their comments on
the specifications presented here and on early drafts of this paper.

MTP: An Atomic Multicast Transport Protocol 17

Appendix: Specification and proof

This appendix presents a specification and a proof of the ordering and agree-
ment protocol. In interest of brevity, the proof is somewhat informal and
incomplete; in particular, several simple lemmas are stated and used without
proof.

Let P0 be the master process and P, through p, be the member processes.
The sequence of messages that pi has delivered to its client is denoted as A,
and we write Mi - I, to mean that Mi is a prefix of MI or M, is a prefix
of Mi. Similarly, we will denote by Ai the messages that pi has marked as
accepted and Ri the messages that pi has marked as rejected. Both R0 and
Ao are defined, but as there is no client of the master, M0 is not defined.
The sequence number of a message sent with the statement multicast ...
["data", s, last, mJ is s - 1, which we will denote as m.seq 1o. We will write
mI < M 2 as shorthand for ml.seq < m2.seq A mi E Ao A M2 E Ao.

The subset of processes that are not faulty are denoted as C. The state
predicate conn(pi,pj) is true when pi and pj are connected, the state pred-
icate send(m,pi) is true when pi sends message m, the state predicates
produce(i) and consume(i) are true when the client on pi requests a message
to be sent and requests data respectively, and the state function S is a subset
of the processes Pl,P2, P,

The specification consists of two properties. The first is a safety property,
which specifies that "bad" states do not occur, while the second is a liveness
property, which specifies that "good" states will eventually occur.

AB-1 The sequence of messages delivered to the clients do not diverge:

0 (Vpip,: M, - M,)

AB-2 There exists a connected subset S of the correct processes C that
make progress:

'Formally, any reference to m is actually a reference to m.seq. The values of Ri and
Ai for i > 0 are state functions whose values are defined by the Lrray Producer.status
and Producer.data: if there exists a state in which process pi has status(k] = accepted and
data[k] # empty, then in that state m: m.aeq = k: m E A,, and if there exists a state
in which process pi has status[k] = rejected, then in that state m: m.aeq = k: m E Ri.
We can then define m E Mi as m E Ai A nextOut > m.seq. Similarly, the values of Ro
and Ao are defined by the array Master.status; if in some state status[k] = accepted, then
henceforth m: m.ae-. = next - k: m E AO, and if in some state status[k] - rejected then
henceforth m: m.seq = next - k: m E Ro.

.MITP: An Atomic Multicast Transport Protocol iS

E (Vm.pi,pj: p,,p, C C: send(m.p,) A 0 (P, E S) :

0m E MIj

Our assumptions are:

e All M, R,, and A, are initially empty;

* the master never fails: po E C;

* conn(p,,p,) is an equivalence relation (i.e., it is symmetric and tran-
sitive);

a unbounded fairness is followed in the selection of enabled guards i.e.,
a guard that remains true will eventually be selected;

* clients on correct processors always continue to send messages and

consume messages:

0 Vp,: pi E C: 0 produce(i) A 0 consume(i)

Additionall,, we will assume without proof that the protocol satisfies the
following three lemmas:

1. The delivery of a message is monotonic:

L1 : 03 (Vm,pi: (m E M) =: 0 (m E M))

2. A process cannot both accept and reject the same message:

L2: 0 (Vp,: (mE A,) * (m € R,))

3. Clients receive messages in message sequence number order:

L3 : 03 (Vml,pi: mi E A *

(Vm 2 : m2.seq < m 1 .seq: M2 E M V m 2 E R,))

AfITP An Atomic Multicast Transport Protocol 19

Showing Safety One can show a program satisfies a safety property E by
finding a property I such that the initial conditions Init imply I. I implies
E I. and I implies E. For I, we will use the conjunct of the two predicates
11 and 12:

Ii: Vm.p,: (m E R,) = (m E Ro)

12: VmIm 2 ,ps: (MI < m 2 A ml .) m , 2 ¢ I2

Initially, all Mi are empty, making the antecedents of 11 and 12 both
false- thus, Init => I. To show 1 and 12 implies AB-1, note that together
they state that for all pi, Mi is a prefix of M0 . Since M, is a prefix of M0
and AM, is a prefix of Mo, at least one of (Mi, Mj) is a prefix of the other,
meaning .1, M .

We now prove I * 0 1. By L1 , I, can become false only if a member
pi rejects a message m before Po rejects m. For p, to reject m, it received a
data message from a member process pj containing values of s and last such
that last(s - m.seq) = rejected. To send such a data message, p3 must have
received from Po a token grant message containing the same values of s and
last. By the definition of R 0 , m E Ro. Thus, I, =. 0 1.

We now prove 12 =. 0 12. 12 can become false only if the expression
mI. m 2,p,: (Mi < m 2Am1 V M,)Am 2 E M, becomes true for some messages
m, and m2 and member process pi; that is, pi delivers a message m 2 to its
client but has not (yet) delivered m, to its client, where m, and m 2 have
both been accepted by po and mi.seq < m2.seq. By L3 , we know that
rn1 E A V mi E R,, and since by assumption n, V M,, we know that
m E R,. By I,, we know that m E R0 , but since m, < M2 we know that
m E A0 . This is a contradiction (it violates L 2), SO 12 = 0 12.

Showing Liveness To show liveness, we will first assume that for the
master 03(t > next) which implies 0(status(t - 1) = null). We will then
show the effects when t is assumed to have a more reasonable value.

Property AB-2 is expressed in terms of the set of processes S; we will
define this set as Pi ES - conn(po,pi). Rewriting, we get

13: 0 (Vm, pi,pi: pi,Pi E C: send(m,p,)A

0 (conn(po,pi) A conn(po,pj)) * C> m E M,)

To show 13, we will need the following five liveness properties, of which
14, Is and Is imply 13:

MTP: An Atomic Multicast Transport Protocol 20

14: C (Vm, p,: p, E C: send(m, pi) A 0 (conn(popi)) - 0 m E Ao)

1,5: 0 (Vm,p,: pj E C: rn E Ao A CJ (conn(po, pj)) 0 m E Aj)

16 0 (Vm,p,: p. E C: m E Ro A C (conn(po,p)) , 0 m E R.)

17: C (Vm: 0 (m E Ao V m E Do))

Is: C (Vm,pj: pj E C: m E A, A C (conn(po,p)) , 0 m E M2)

For brevity, only an informal proof for 15 will be shown. If there are
no p, that satisfy 15, then the lemma is vacuously true, so we will assume
that there is at least one such pj, say pk. By assumption, the producer

on Pk will eventually request a message to be sent, and by finite progress
pk will eventually send a message to Po requesting a token. By fairness and
connectivity, Po will eventually select the guard (status(t-1) = null). By the
definition of A 0 , m E A0 * status(next - m.seq) = accepted, which is passed
back to Pk in the token grant message (again by fairness and connectivity).

By finite progress, Pk will send a message containing the value of last,
and since connectivity is an equivalence, any pj is connected to Pk, and will
therefore receive this message. Then, by finite progress pi will eventually
set m E Aj, and the lemma holds.

The effect of letting t to be smaller than the maximum sequence number
is that a nonfaulty process pi that is connected to Po may not satisfy AB-2:
in particular, 1 s and 16 may not hold. A sequence of f >_ t token requests by
processes that appear to fail after having been granted a token will generate
a sequence of f rejected messages. However, when pi receives message m, it
only sets the status for messages in': m'.seq _:m.seq - t, so there will be some

message whose status will remain pending. Eventually, nextn - nextOut
will be greater than t and nextOut will point to the pending message, forcing

P, to rejoin. Thus, the algorithm is live only if there are no sequences of
rejected messages with a length of f 2! t.

References

[BJ871 Ken Birman and Thomas Joseph. Exploiting virtual synchrony
in distributed systems. In Proceedings of the Eleventh Sym-
posium on Operating System Principles, pages 123-138. ACM
SIGOPS, 1987.

AITP An Atomic Multicast Transport Protocol 21

[CLZS7] D. Clark, M. Lambert, and L. Zhang. NETBLT: A high through-
put transport protocol. In Proceedings of ACM SIGCOMM "87
Workshop, pages 353-359, 1987.

[CM87] J. Chang and M. Maxemchuck. Atomic broadcast. ACM Trans-
actions on Computer Systems, 2(3):251-273, August 1987.

[CP8SI J. Crowcroft and K. Paiwoda. A multicast transport protocol.
In Proceedings of SIGCOMM '88, pages 247-256. ACM, August
1988.

[Cri88] Flaviu Cristian. Reaching agreement on processor group mem-
bership in synchronous distributed systems. In Proceedings of
the 18th International Conference on Fault- Tolerant Computing.

IEEE TCOS, 1988.

[Cri90] Flaviu Cristian. Understanding fault-tolerant distributed sys-
tems. Communications of the ACM, 33(8), August 1990.

[CW89] David Cheriton and Carey Williamson. VMTP as the transport
layer for high-performance distributed systems. IEEE Commu-
nications Magazine, pages 37-44, June 1989.

[DC90] Stephen E. Deering and David R. Cheriton. Multicast routing
in datagram internetworks and extended LANs. ACM Transac-
tions on Computer Systems, 8(2):85-110, May 1990.

[DGMS85] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in
partitioned networks. ACM Computing Surveys, 17(3):341-370,
September 1985.

[Gra79] J. N. Gray. Notes on Database Operating Systems. Springer-
Verlag, Munich, 1979.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commu-
nications of the ACM, 21(8):666-677, August 1978.

[JB891 Thomas Joseph and Kenneth Birman. Reliable Broadcast Pro-

tocols, pages 294-318. ACM Press, New York, 1989.

[KTHB90] M. Franz Kaashoek, Andrew S. Tanenbaum, Susan Flynn Hum-

mel, and Henri E. Bal. An efficient reliable broadcast protocol.
Operating Systems Review, 23(4):5-19, October 1990.

MITP An .Atomic .Multicast Transport Protocol 22

[.MSS8j Keith Marzullo and Frank Schmuck. Supplying high availabil-
ity with a standard network file system. In Proceedings of the

Eighth International Conference on Distributed Computing Sys-
tems, pages 447-455. IEEE Computer Society, June 1988.

[Ric9O] Aleta Ricciardi. A formalism for fault-tolerant applications in
asynchronous systems. In Fourth SIGOPS European Workshop.
September 1990.

[Sch86] Fred B. Schneider. The state machine approach: A tutorial.
Technical Report TR 86-600, Cornell University, Dept. of Com-
puter Science, Upson Hall, Ithaca, NY 14853, December 1986.

.I-P; An Atomic Multicast Transport Protocol "23

data(n)

data(n+1)

data(n + w -1)

data(n+w)

data(n+w+)

data(n + 2w -)

empty(n+ 2w): n..n + u, - 1
can be released

data(n + 2w) with eom:
n + 2..n + w + 2 can be released

window w = 3
retention r = 2

heartbeat h

Figure 4: Normal Data Transmission

MITP: .- n .Atomnic Mfulticast Transport Protocol 2

data(n)
data(n +1)

h ~data(n + w -

nak(n')

retrans(n')

data(n -w+)

nak(n')

data(n +2w -1): n..n+ w -

can be released

nak deny(n')

data(n + 2w) with eomn:

window w =3 n + 2..n + w + 2 can be released

retention r =2

heartbeat h

Figure 5: NAKs and Retransmission

.\ITP- An1 Atomic Mfulticast Transport Protocol 2.5

token req

join reqj

token resp [s]

messagefs)

token req

join respfs+I

transfer state

token resp[s+1]

message[s+ 11

member master joiner

Figure 6: Joining and State Transfer

